Deep-tissue, high-contrast imaging at the in vivo level represents a critical diagnostic step both at the preclinical and clinical level. In our group, we push the limits of optical imaging approaches employing fluorescence nanoparticles operating in the so-called biological windows. These are spectral ranges located in the infrared region (750-1800 nm), in which tissues are partially transparent to the electromagnetic radiation.

We have been pioneers in the development of cost-effective, highly versatile experimental set-ups for in vivo infrared fluorescence imaging. We also develop suitable contrast agents composed of infrared-emitting semiconductor nanocrystals and rare earth-doped nanoparticles.
The imaging techniques we employ at nanoBIG include hyperspectral in vivo imaging, in vivo lifetime imaging, and subtissue fluorescence-assisted thermal videorecording (see figure).
Aside from purely imaging purposes, we employ the nanomaterials we develop for theranostics (combined therapy and diagnostics).

scientific image referred to near infrared bioimaging


Monitoring of the thermal state of biological systems can afford information about processes occurring down to the single-cell level. On the other hand, in the context of thermal therapies (i.e., magnetic hyperthermia and photothermal therapy), real-time temperature monitoring allows on-the-fly adjustments of the therapeutic parameters.
To that end, in the toolbox of methods for non-invasive thermometry, semiconductor nanocrystals have emerged as efficient multifunctional fluorescent nano-thermometers capable of simultaneously generating intracellular imaging, as well as acting as optical thermal indicators. For example, they have been used for dynamical thermal monitoring of single cells in the proximity of heat sources or during externally induced thermogenesis processes.

Compared to other methods, semiconductor nanocrystals-based thermometry offer superior performance such as sub-micrometric resolutions, high contrast, good biocompatibility, excellent temperature resolution (of about 0.2 °C) and possibility of selective targeting via surface functionalization.

scientific image referred to nanothermometry and hyperthermia


Optical tweezers are scientific instruments that use a highly focused laser beam to create an attractive or repulsive force - typically in the order of picoNewtons, and dependent upon the refractive index mismatch - to physically "grab" and move dielectric objects at the micro- and nanoscale.

Optical tweezers have been particularly useful for the study of a variety of biological systems in recent years, as they can be used to immobilize and manipulate small objects (e.g., a nanoparticle) into the system of interest (e.g., a cell).
Single-beam optical tweezers were initially introduced by Ashkin et al.: Therein, a single laser beam is focused through a high numerical aperture objective lens to generate a three-dimensional optical trap by exerting a radiation force on small objects.
Since then, optical tweezers have become calibrated tools to immobilize, orient, and transport sub-micrometric particles. The nanometer positioning ability along with sub-picoNewton force resolution have turned this approach into a valuable tool in biology. However, direct trapping and manipulation of smaller particles still represents a challenge, as they are substantially harder to trap.

scientific image referred to optical trapping


Optical coherence tomography (OCT) is based on low-coherence interferometry, typically employing near-infrared light, which enables deep-tissue imaging with typical resolutions of ~10-20 µm and reaching penetration depths as large as 3 mm in nontransparent media.
In our lab, we host an intracoronary OCT (IC-OCT) system used in clinical practice at the Interventional Cardiology Unit of the Hospital Universitario La Princesa of Madrid (Dragonfly OPTIS Imaging Catheter St Jude Medical) as well as an open OCT system (Telesto Thorlabs OCT system).

We can harness the light scattering properties of plasmonic gold-based nanoparticles and PbS quantum dots to obtain positive OCT contrast (see image). In the case of near-infrared emitting PbS quantum dots, the simultaneous use of the OCT setup and an infrared camera enables OCT and two-dimensional luminescence imaging of arteries (see image). The use of highly absorbingplasmonic nanomaterials (e.g., CuS nanoparticles) allows instead to generate dark contrast in OCT images, which is envisaged to be of utility in the precise localization of atheromata.

scientific image referred to optical coherence tomography


Confocal fluorescence imaging has demonstrated to be a powerful technique for the characterization and understanding of a great variety of micro- and nano-photonic devices.
NanoBIG has worked extensively on the application of confocal fluorescence imaging for the acquisition of fluorescence images of ultrafast laser-inscribed photonic devices in laser gain media.

These images have been pivotal to understand the role played by the different micro-structural modifications induced by ultra-intense laser pulses (stress, damage, disorder) in the performance of diffeent structures ranging from waveguides to photonic crystals.

scientific image referred to spectroscopy and fluorescence imaging of photonic devices
Our research is supported by the following funders: nanoBig science group research is supported by santander, european commission, spain governament
Since 2011, the researchers of nanoBIG have been working on several externally funded projects:
"Multi optical trapping of upconverting nanoparticles using metasurface: the next leap in optical manipulation" Founded by Ministerio de Ciencia e Innovación. CONSOLIDACIÓN INVESTIGADORA - 2022 Ref: CNS2022-135495. Principal Investigator: Patricia Haro González 2023-2025
"Fishing nanoplastics in desalinated seawater" Funded by Ministerio de Ciencia e Innovación. PROYECTOS DE TRANSICIÓN ECOLÓGICA Y TRANSICIÓN DIGITAL 2021. Ref: TED2021-129937B-I00. Principal Investigator: Patricia Haro González, Mercedes Hernando Pérez. 2022-2024
"MONOCLE: Emission Control of Rare-Earth Nanoparticles" Funded by the European Commission. Marie Skłodowska-Curie Action project 895809. Principal Investigator: A. Skripka. 2021-2024
"Biosensores electro-luminiscentes basados en papel, nanopartículas y azocompuestos" Funded by Comunidad de Madrid. Ayudas a proyectos de I+D para joves investigadores de la Universidad Autónoma de Madrid. Ref: SI3/PJI/2021-00211. Principal Investigator: E. Martín Rodríguez
"RETINanoTHERMIA: “Termometría de luminiscencia con nanopartículas como herramienta para el diagnóstico precoz de una enfermedad distrófica de la retina" Funded by Ministerio de Ciencia e Innovación. Proyectos I+D+i, 2020. Ref: PID2020-118878RB-I00 . Principal Investigator: E. Martín Rodríguez
"NANONERV: Super-bright nanoparticles for theranostics nervous system-associated pathologies." Funded by Ministerio de Ciencia e Innovación. Proyectos I+D+i, 2019. Ref: PID2019-106211RB-I00. Principal Investigator: D. Jaque and N. Fernández Monsalve. 2020-2022
"BIOTRAP: Probes in optical traps." Funded by Ministerio de Ciencia e Innovación. Proyectos I+D+i, 2019. Ref: PID2019-105195RA-I00. Principal Investigator: P. Haro González. 2020-2022
"Biosensores Luminiscentes: una nueva herramienta para la biodetección remota." Funded by Comunidad Autónoma de Madrid. Ayudas a proyectos de I+D para joves investigadores de la Universidad Autónoma de Madrid. Ref: SI1/PJI/2019-00052 Principal Investigator: P. Haro González. 2020-2022
"LANTERNS: LANthanide-doped TERNary quantum dotS. Harnessing the best of both worldsfor a brighter future in near-infraredoptical imaging." Marie Skłodowska-Curie Action project 797945. Funded by the European Commission. Principal Investigator: R. Marin. 2019-2021
"Red Madrileña de Nanomedicina en Imagen Molecular" Funded by Comunidad Autónoma de Madrid. Ayudas para la realización de programas de actividades de I+D entre grupos de investigación de la Comunidad de Madrid en Biomedicina. Ref: S2017/BMD-3867 RENIM-CM. Coordinator: M. Desco. Principal Investigator UAM: D. Jaque. 2018-2021.
"NanoTBTech: Nanoparticles-based 2D thermal bioimaging technologies" Founded by European Comission within the program “FET-Open – Novel ideas for radically new technologies”. Main coordinator: L. Carlos (University of Aveiro, Portugal). Coordinator of FIBRICIS-UAM Group: D. Jaque. 2018-2020
"Obtención de imagen diagnóstica molecular intracoronaria in vivo mediante el uso de Tomografía de Coherencia Óptica y nanopartículas funcionalizadas" Supported by Instituto de Salud Carlos III. Principal Investigator: F. Alfonso Manterola. 2017 – 2019.
"Nanomateriales para el estudio de afecciones cardiovasculares" Funded by Ministerio de Ciencia e Innovación. Ref.: MAT2016-75362-C3-1-R. Principal Investigator: D. Jaque. 2017-2019.
"The European upconversion network - from the design of photon-upconverting nanomaterials to biomedical applications" Supported by European Union, Ref.: CMST COST Action CM1403. Coordinator: H. Gorris. Principal Investigators UAM: J. García Solé, D. Jaque. 2015 - 2018.
"Pinzas Opticas para estudios celulares asistidos por nanopartículas" Supported by Banco Santander, Ref: 2015/ASIA/06, 1, Principal Investigator: P. Haro González. 2015- 2016.
"Nanoestructuras multifuncionales para imagen y termoterapia controlada" Supported by Ministerio de Ciencia e Innovación. Reference MAT2013-47395-C4-1-R. Principal Investigator: D. Jaque. 2014- 2016.
"Modulation of cellular micro RNAs as a therapeutic strategy for the cure of HIV infection (The miRNAcure Project)" Supported by Instituto de Salud Carlos III. Coordinator: S. Moreno Guillén. Principal Investigator UAM: F. Sanz Rodríguez, 2014-2016.
"European F-Element Network (EuFEN)" Supported by European Union. COST ACTION CM1006. Principal Investigator: Dr Stephen T. Liddle (coordinator). Principal Investigator UAM: D. Jaque. 2014-2015.
"Estudio de los procesos de memoria y aprendizaje en c-elegans mediante el uso de dispositivos avanzados de opto-fluídica" Supported by Banco Santander. Principal Investigator: D. Jaque. 2013- 2014.
"Novel luminescent upconversion nanoparticles for diagnostic and therapeutic nanomedicine (LUNAMED)" Marie Curie IOF Fellowship Project 274404. Supported by European Comission. Principal Investigator: E. Martin Rodríguez. 2011-2014.
"Nanopartículas inorgánicas luminiscentes para imágenes ópticas en fluidos y sistemas biológicos" Supported by Ministerio de Ciencia e Innovación. Ref MAT2010-16161. Principal Investigator: D. Jaque. 2011- 2013.
"Localización subcelular de compuestos fotosensibilizadores y efecto fotodinámico diferencial en células normales y tumorales de mama" Programa de Cooperación con Iberoamérica, Agencia Española de Cooperación Internacional (AECI-A/025150/09), Principal Investigator: F. Sanz Rodríguez. 2011- 2012.


SCROLL UP nanoBig science group research logo